On the Importance of Physically Correct Models for Protein-Ligand Binding

Martin Lepšík, A. Imberty, P. Hobza, J. Řezáč

lepsik@uochb.cas.cz

Němčice, ENBIK 06/2022

Ligand Design via Quantum Chemical Scoring

<u>M. Lepšík,</u> J. Fanfrlík, A.Pecina, S. Eyrilmez, C. Köprülüoglu, P. Hobza, J. Řezáč

IOCB Prague, Czech Academy of Sciences

ÚOCHB & IOCB PRAGUE

IT4I: 20+ MCPU hours IOCB Tech

Computer-Aided Drug Design

Structure-based approach

- Target/Receptor (protein)
- Ligand (small molecule / drug)
- 3D structures (X-ray crystallography, NMR, cryo-EM)
- non-covalent interactions governing the affinity

- prioritize compounds for synthesis
- exclude non-binders

Image: Prajapat P, Agarwal S, Talesara GL, J. Med Org Chem 2017

What is scoring?

Predicting the strength of protein-ligand interaction from structure

 $\Delta G_{bind} = -12.456$ kcal/mol

What is scoring?

Predicting the strength of protein-ligand interaction from structure

Score = -42.01 units

Scoring function "taxonomy"

knowledge-based

ligand-based (target-specific)

structure-based

statistical models

machine learning (ML)

physics-based

molecular dynamics

endpoint methods

molecular mechanics

all-atom

grid representation

quantum mechanics (QM)

Scoring function "taxonomy"

knowledge-based

ligand-based (target-specific)

structure-based

statistical models

machine learning (ML)

physics-based

molecular dynamics

endpoint methods

molecular mechanics

all-atom

grid representation

quantum mechanics (QM)

Universal Reliable Scoring Function

QM Methods for Non-covalent Interactions

- Small models, accurate calculations (CCSD(T)/CBS) in vacuum
- <u>www.nciatlas.org</u> (~ 20,000 data points)
- hydrogen bonding, dispersion, sigma-hole interactions,.....

Coverage of the periodic table:

Н																	Не
Li	Ве											В	С	Ν	0	F	Ne
Na	Mg											Al	Si	Ρ	S	Cl	Ar
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Хе
Cs	Ba	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Τl	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og

No. of complexes containing the element 1000+ 500+ 100+ 50+ 10+

 Development of semiempirical QM methods - corrections for non-covalent interactions chemical accuracy (1 kcal/mol) in small dimers

Semiempirical QM methods

- Fast calculation
- Easy preparation (no system-specific parameters)
- Accuracy?

correcting SQM methods for non-covalent interactions^[1-3]

[1] Řezáč et al.; J. Chem. Theory Comput. 2009, 5, 1749
[2] Řezáč and Hobza.; J. Chem. Theory Comput. 2012, 8,141
[3] Řezáč; J. Chem. Theory Comput. 2017, 13, 4804

Implicit Solvation Models

reparametrisation of COSMO → COSMO2

Kříž, Řezáč; J. Chem. Inf. Model. 2019, 59, 229

SQM-based Scoring function

Modular physics-based approach: components can be replaced if better alternative exists

Score = ΔE_{int} PM6-D3H4X + further corrections + $\Delta \Delta G_{solv}$ PM6/COSMO2 + $\Delta G_{conf,w}(L)$ Optimized free molecule / optional conformation search + $\Delta G_{conf,w}(P)$ LM5 model fitted to QM data - $T\Delta S$

Fanfrlík et al.; *J. Phys. Chem. B* **2010**, *114*, 12666 Lepšík et al.; *ChemPlusChem* **2013**, *78*, 921 Pecina et al.; *ChemPlusChem* **2020**, *85*, 2362

12

QM/MM Setup

- Ligand ~ 10 to 100 atoms
- Protein ~ 10 000 atoms
- We consider model of the active site with ~1500 atoms (10 Å sphere around ligand)
- Proven to converge to the results obtained in the whole protein
- One protein conformation for a series of ligands
- QM/MM geometry optimization
 - + many more steps

Questions

Is SQM-score generally applicable? How does it compare to commonly used scoring functions (SF) in academia/industry?

Verification

Evaluation against experimental "truth" in multiple diverse data sets

- Input: Experimental structures or a reliable model
- Comparison with experimental affinities

Experimental data

All data

PDBBind database ~20,000 systems

Reproducibility from multiple independent measurements - $R^2 = 0.8$ X

No time to prepare each system carefully

Reliable data

Reliable structures, preferably crystal

Measurements from one lab

Only tens of target / ligand series

Careful preparation of each protein

Current Status

Best SFs in the CASF2016^[1]

Structure-based machine learning

× MD-based methods (FEP)

Timing:

- Empirical SFs <= seconds
- SQM-score ~ 30 minutes

[1] M. Su, Q. Yang, Y. Du, G. Feng, Z. Liu, Y. Li, R. Wang, J. Chem. Inf. Model., 2018.

Diverse protein-ligand datasets

- consistent inhibition constants, IC₅₀
- reliable crystal structures

	Ligands	Similarity	Crystals	Expt.
001 Carbonic anhydrase 2	10	0.32	10	Ki
002 HIV protease	22	0.43	15+	Ki
003 CDK2	12	0.38	15	Ki
004 Casein kinase 2	9+	0.47	9+	Ki
006 Aldose reductase	14	0.47	14	Ki + IC50
010 CDK2	21	0.88	1	IC50
011 Cathepsin D	10	0.71	3	IC50
032 BACE1	16	0.48	20	IC50
038 JAK1	10	0.58	12	Ki
043 Trypsin	10	0.71	5	Ki

SQM-score Performance

 $\Delta G_{\text{bind}} = \text{RT In } K_{\text{i}}$

	R² to experiment Ligands v 1.02 v 2.19 10 0.21 0.66 12 0.41 0.55 12 0.53 0.83 9 0.64 0.65 14 0.61 0.78 21 0.55 0.84 10 0.62 0.75 16 0.01 0.56		
	Ligands	v 1.02	v 2.19
001-CA2	10	0.21	0.66
002-HIV-PR	12	0.41	0.55
003-CDK2	12	0.53	0.83
004-CK2_Dobes	9	0.64	0.65
006+037-AR	14	0.61	0.78
010-CDK2-biphenyls	21	0.55	0.84
011-Cath-D	10	0.62	0.75
032-BACE1-challenge	16	0.01	0.56
38-JAK1	10	0.04	0.83
AVERAGE		0.40	0.72

- multi-step optimization protocol, focus on fixing H-bond networks
- tight control of SQM calculation
- reparametrized H4 and X corrections
- additional corrections for sulfur
- halogen bonding correction in MM

Summary

- SQM-score outperforms classical and ML scoring functions
- reasonable computational cost (20 min/1 CPU)
- prototype software licensed to US-based pharma company
- Heading towards marketable, stand-alone implementation

Acknowledgements

- IOCB internal grant
- European Regional Development Fund; OP RDE; Project: "ChemBioDrug" (No. CZ.02.1.01/0.0/0.0/16_019/0000729).

Reviews:

Lepšík et al.; *ChemPlusChem* **2013**, 78, 921 Pecina et al.; *ChemPlusChem* **2020**, 85, 2362

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Towards realistic use case

Unknown structure of the complex - ability to calculate new molecules

faster protocol for selecting best geometries (poses) from docking^[1]

[1] A. Pecina, R. Meier, J. Fanfrlík, M. Lepšík, J. Řezáč, P. Hobza, C. Baldauf; Chem. Commun. 2016

Case Study 1: Ranking - Carbonic anhydrase II

- Set of 10 inhibitors binding to carbonic anhydrase II through Zn²⁺
- 10 high-resolution (1.1–1.4 Å) crystal structures
- Consistent inhibitory constant (K_i) values measured at IOCB
- Score vs. $\Delta G_{bind} = RT \ln K_i$

Pecina et al.; ChemPhysChem 2018, 19, 873

Case Study 2: Sampling (Native Pose Identification)

- diverse set of 21 protein-ligand systems (17 shown here)
- crystal structures available in PDB
- two SQM methods: SQM1=DFTB-D3H4X/COSMO SQM2=PM6-D3H4X/COSMO
- compared to 4 standard scoring functions
- evaluation: false positive = a pose with better score than crystal (ideal: zero false positives)
- SQM has 4-12-times less FPs than the standard SFs

Number of False Positives

Pecina et al.; *Chem. Commun.* **2016**, 52, 3312 Pecina et al.; *J. Chem. Inf. Model.* **2017**, 57, 127 Ajani et al.; *ACS Omega* **2017**, 2, 4022

Case Study 3: Virtual screening (Library enrichment)

- Heat shock protein (HSP90); important for cancer and immunity
- 72 biologically active compounds + 4469 structurally similar compounds (DUD-E decoys)
- Enrichment factor (EF₁) and ROC curves (AUC%), where random is (1, 50%) and ideal (63, 100%)
- Standard docking provides good poses but standard SFs fail in their correct ranking
- Rescoring by SQM increases enrichment significantly
- Combination of SQM geometries and SQM/COSMO SF leads to the best enrichment!

Eyrilmez et al.; ChemPhysChem 2019, 20, 2759

Polarisation in Classical Molecular Dynamics (MD) of Protein/Ion/Ligand Complexes

M. Lepšík, S. Kuhaudomlarp, P. Jungwirth, A. Imberty

CERMAV, CNRS, Grenoble, France

Marie Sklodowska-Curie

Individual Fellowship

"CaLecLig" 2018-2020

Bacterial Infection: Virulence Lectins

Pseudomonas aeruginosa
cystic fibrosis

- Biofilm, virulence factors
- LecA, LecB lectins
- tetramers
- Ca²⁺ in binding site
- Bind human oligosaccharides

E. Mitchell, et al., Nat. Struct. Biol., 2002, 9, 918

Electronic Continuum Correction for MD

 classical fixed-charge nonpolarizable force fields miss electronic polarization, screening of charges

• charge scaling by inverse of square-root of water permittivity at high frequency $q_r = \frac{q}{\sqrt{\epsilon_r}}$

(2+ charge Ca²⁺ - black, red; scaled Ca²⁺ parameters – blue, green), crystallographic value (yellow)

M. Lepsik, et al., Eur. J. Med. Chem., 177, (2019), 212