

Plasmid Identification Through Graph Neural Networks

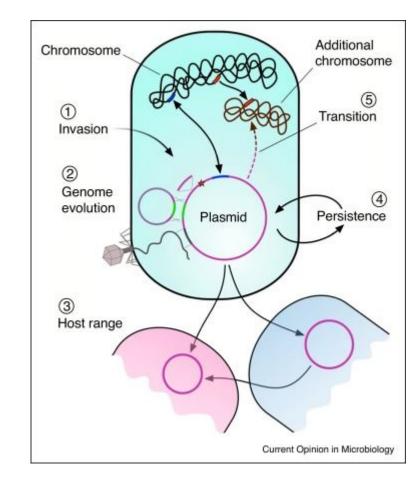
Broňa Brejová¹, Veronika Tordová¹, Kristián Andraščík¹, Cedric Chauve², <u>Tomáš Vinař</u>¹

¹ Comenius University in Bratislava, Slovakia ² Simon Fraser University, Burnaby, BC, Canada

What are plasmids and why are we interested?

- small circular DNA molecules, typically in bacteria
- replicate independently of chromosomal DNA
- carry genes that confer selective advantage e.g. antibiotic resistance
- facilitate horizontal transfer between individuals

This typically means observable differences between chromosome and plasmid sequences.



Sequence-based properties for Klebsiella oxytoca

0.5 normalized read coverage 0.0 2 6 8 0 4 10 GC content 0 0.6 0.4 relative *k*-mer content (dot product of contig k-mer content and 1000 whole-sample k-mer content vectors) 0 0.002 0.003

orange: chromosomes blue: plasmids

10

0.8

Problem

 In a bacterial genome assembled from a bacterial isolate identify which contigs correspond to chromosomes and which contigs correspond to plasmids

Is this a difficult task?

• Depends largely on the **quality of the assembly**

Example: hybrid assembly C. freundii SAMN15148288

>1 length=5061881 depth=1.00x circular=true
>2 length=230132 depth=0.58x circular=true
>3 length=103762 depth=2.48x circular=true
>4 length=35077 depth=8.77x circular=true
>5 length=6790 depth=30.30x circular=true
>6 length=3370 depth=22.65x circular=true
>7 length=2001 depth=27.23x circular=true

Example: short-read assembly C. freundii SAMN15148288

```
>1 length=1221865 depth=1.00x
>2 length=527709 depth=1.04x
>3 length=460930 depth=1.00x
>4 length=456861 depth=0.98x
>5 length=366649 depth=1.01x
```

```
>170 length=108 depth=1.13x
>171 length=106 depth=1.29x
>172 length=106 depth=1.24x
>173 length=102 depth=0.70x
```

. . . .

Problem

 In a bacterial genome assembled from a bacterial isolate identify which contigs correspond to chromosomes and which contigs correspond to plasmids

Is this a difficult task?

- Depends largely on the **quality of the assembly**
- Long contigs easily classified, short contigs almost impossible

Our goal:

• Contig classification for **short-read assemblies** with **many short contigs**

Standard approaches

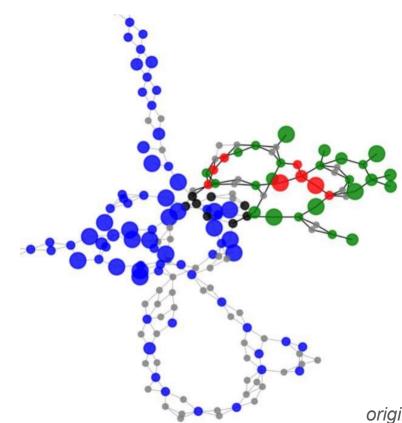
Classification of individual contigs:

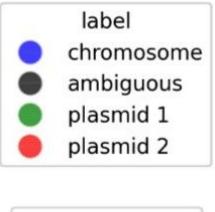
- based on sequence features
 k-mer composition, GC content (specific for each species)
 coverage by sequencing reads
 [mlplasmids, PlasClass, ...]
- **based on similarity to known chromosomes / plasmids** [PlasForest, Platon, Deeplasmid, RFPlasmid, ...]

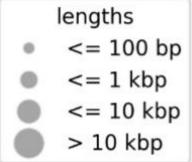
... but context matters

"... Analysing the pattern of ABR gene occurrence in the genomes of 2635 *Enterobacteriaceae* isolates, we find that **33% of the 416 ABR genes are shared between chromosomes and plasmids**. Phylogenetic reconstruction of ABR genes occurring on both plasmids and chromosomes supports their **evolution by lateral gene transfer**. ..."

Assembly graph







original idea Pu and Shamir, 2022, Bioinformatics

Graph Neural Networks

Graph convolution layers (GCLs):

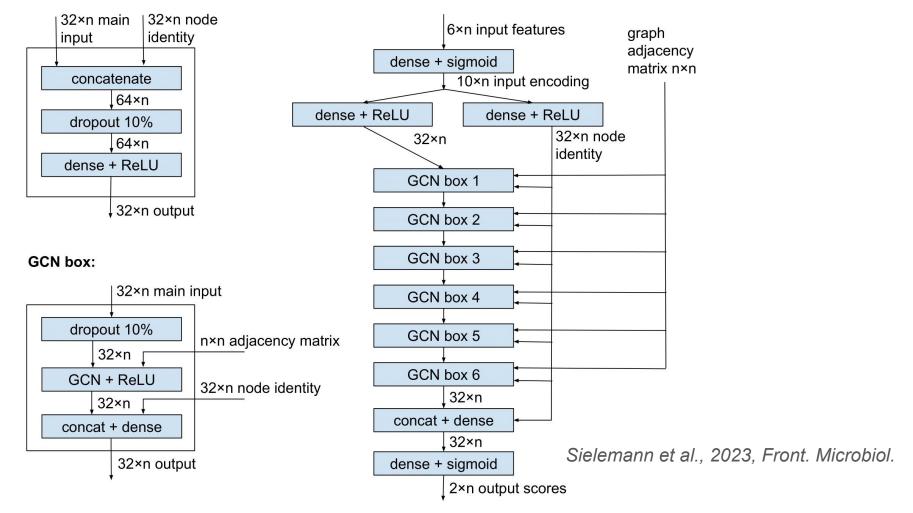
 $Z = \sigma(\tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2} X\Theta + b)$

- combine feature values of each node with its neighbors (scaled by a function of node degree to prevent numerical explosion)
- combine values of features within node using linear combination (trainable weights Θ and b)
- pass through a non-linear activation function σ

Using *d* GCL layers, information is integrated from nodes at a distance <=*d*.

Concat + dense box:

Overall architecture:



Relative features - example: relative k-mer content

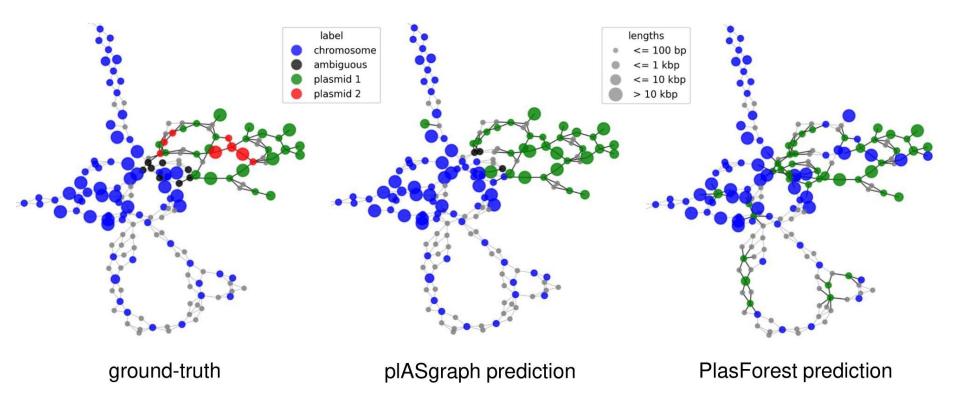
- vector p = 5-mer content of whole assembly (dominated by chromosomes)
- vector q = 5-mer content of a given contig
- relative k-mer content: (p, q)
 - chromosome contigs will have a 5-mer composition similar to the overall assembly
 => large values
 - plasmid contigs will have 5-mer composition different from the overall assembly
 => small values
- prevents network learning specific k-mers included in specific genomes from the training set

pIASgraph2 - experimental evaluation

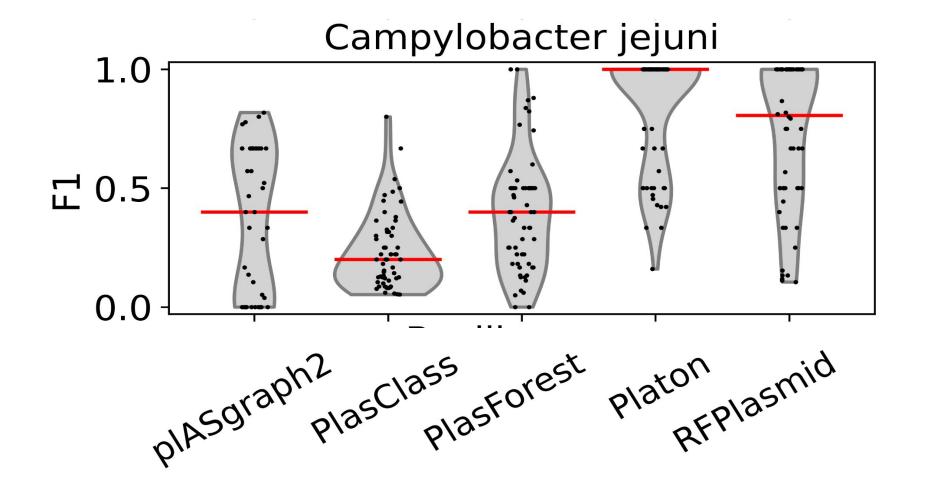
- trained on a dataset of 140 short-read assemblies from the ESKAPEE isolates
- tested on a dataset of 224 short-read assemblies from the ESKAPEE isolates
- annotated using hybrid assemblies of the same isolates
- additional testing on closely-related and more distant species that were not included in the training set

ESKAPEE = Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., Escherichia coli

Method	SS	DB	AUROC	Precision	Recall	F1	Accuracy						
A: Plasmid classification, contigs >100 bp, $n = 38,110$													
plASgraph2	_	_	0.991	0.906	0.908	0.808	0.935						
mlplasmids	Х	_	0.896	0.273	0.957	0.480	0.641						
PlasClass	_	_	0.892	0.381	0.939	0.617	0.794						
PlasForest	_	X	n/a	0.486	0.939	0.711	0.852						
Platon	_	Х	n/a	1	0.5	0.667	0.924						
Deeplasmid	—	X	n/a	n/a	n/a	n/a	n/a						
RFPlasmid	Х	Х	0.973	0.854	0.789	0.667	0.885						



Sielemann et al., 2023, Front. Microbiol.

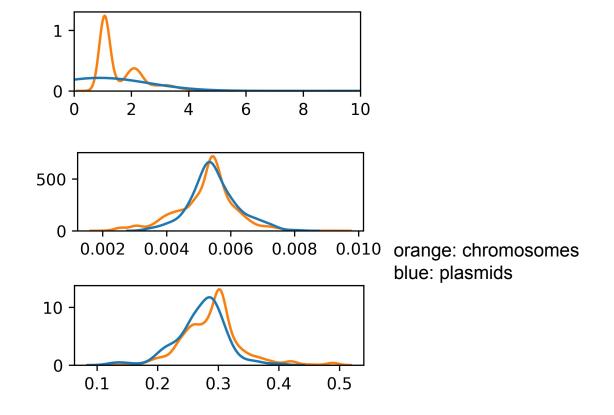


Sequence-based properties for Campylobacter jejuni

normalized read coverage

relative GC content

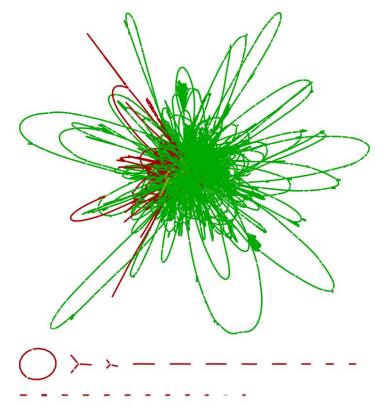
relative *k*-mer content (dot product of contig k-mer content and whole-sample k-mer content vectors)



How to introduce homology?

- introduce **tags** that are easily located in sequences and may indicate **plasmids** or **chromosomes**
 - Pfam protein families
 - simple homology-based tags
- logodds score based on number of occurrences in training (additive, similar to BLOSUM scores)
 - positive = more likely plasmid
 - zero = neutral
 - negative = more likely chromosome

Pan-genome approach with Geese



Method	\mathbf{SS}	DB	AUROC	Precision	Recall	F1	Accuracy
plASgraph2	3 -	 .	0.991	0.906	0.908	0.808	0.935
plASgraph2 + Pfam	_	Х	0.996	0.980	1.000	0.926	0.970
plASgraph2 + Geese	-	X	1.000	1.000	1.000	0.970	0.988
mlplasmids	X		0.896	0.273	0.957	0.480	0.641
PlasClass	-		0.892	0.381	0.939	0.617	0.794
PlasForest	1	X	n/a	0.486	0.939	0.711	0.852
Platon	-	X	n/a	1	0.5	0.667	0.924
RFPlasmid	X	X	0.973	0.854	0.789	0.667	0.885

Brejová et al., 2025, unpublished

Acknowledgements

Computational Biology Group at Comenius University in Bratislava

Broňa Brejová

M

Dept. of Mathematics, Simon Fraser University, Canada

- Cedric Chauve
- Aniket Mane
- Mahsa Faizrahnemoon

Bielefeld University

- Janik Sielemann
- Katharina Sielemann

VEGA 1/0538/22 (TV) VEGA 1/0140/25 (BB) SRDA APVV-22-0144

Digital Research Alliance of Canada

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 872539

WBCB 2025: Workshop on Bioinformatics and Computational Biology

The workshop is organized to help foster contacts within the bioinfo and compbio communities, especially those in Central Europe, within the settings of a larger IT meeting. It will provide a forum for the exchange of ideas on the newest developments in the disciplines, as well as an opportunity to introduce the history and interests of individual labs/groups.

Key dates:

full paper submission: June 27, 2025 abstract submission: August 7, 2025

https://wbcb.biocenter.sk/

Invited speaker:

Fereydoun Hormozdiari, University of California at Davis, USA

Program chairs: Monika Čechová, Luca Denti